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Steady-state radiation heat transfer through layers where both

scattering and absorption occur within the layers is treated analyti-

cally by means of single dimensional fluxes. The set of simultaneous

equations for the flux in the direction of heat flow, the flux in the

opposite direction, and a heat balance equation has a general solu-

tion to which boundary conditions are applied to derive expressions

for desired quantities for an arbitrary layer. In this way the trans-

fer through a layer and the emission from it, as well as its tempera-

ture distribution, are derived in terms of the absorption and

scattering coefficients of the layer, the index of refraction, the

lattice conductivity and the heat applied to it. The treatment
includes the effects of surface reflections.

Radiation transfer through nonradiating layers is also treated

in order to solve the equations which obtain for the absorption and

scattering coefficients so that these can be calculated from optical

transmission measurements.

INTRODUCTION

Radiation heat transfer through nonisothermal layers, where both

scattering and absorption occur, is a very difficult situation to

treat in its full generality. One method is to use electronic data

processing machines to arrive at numerical answers for specific situa-

tions; however, it is advantageous to obtain analytical expressions

since it is usually possible to infer more from such expressions about

the mechanisms that occur and the directions to manipulate parameters

in order to obtain desired results. It is, however, normally necessary

to simplify the situation in order to be able to treat it mathemati-

cally. This paper simplifies the actual situation by treating only

completely diffuse radiation by a single dimensional heat flux calcu-

lation and therefore neglects any three-dimensional effects. Though
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this simplification undoubtedly decreases the accuracy of the results,
it allows one to handle rather complicated situations and to obtain
useful information about the mechanismsoccurring.

SYMBOLS

a

b

D

E

I

J

k

n

s

T

_o

P

Oi

Po

absorption coefficient for diffuse radiation

constant equal to 4_'n2To 3

thickness of layer

black-body radiant energy flux

radiant energy fltux in the direction of the positive x axis

radiant energy flux in the direction of the negative x axis

lattice thermal conductivity

index of refraction

scattering coefficient for diffuse radiation

temperature (absolute)

optical constant for nonisothermal case equal to q/(a + 2s)

optical constant for isothermal case equal to

ja/(a + 2s) : _o/(a + 2s)

emissivity

flux (energy) gradient at surface (dE/dX)surface

material constant representing ratio of radiant transfer to

lattice transfer in the center of an optically dense layer

and equal to 2b/k(a + 2s)

diffuse reflectance of a layer

total diffuse reflectance at an interface where the index of

refraction is decreasing

total diffuse reflectance at an interface where the index of

refraction is increasing

optical constant for nonisothermal case similar to an

extinction coefficient equal to oo _ (i + _)
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T

isothermal extinction coefficient equal to _a(a + 2s)

Stefan-Boltzmann radiation constant

diffuse transmittance of layer

BASIC THEORETICAL ASSUMPTIONS

The theoretical method used in this study is based on a system

originally conceived by Schuster (refs. i and 2) and added to by

Hamaker (ref. 3); the notation used here is essentially that of

Hamaker. For the isothermal case the method is equivalent to that

developed by Kubelka and Munk and extended by others (refs. 4-8). With

suitable changes in notation (see ref. 3) their set of equations can

be transformed into the system discussed here and vice versa. The

basic method is that of dividing the flux into two parts: one flowing

in a positive directlon_ and the other in a negative direction. A

set of simultaneous differential equations is used to describe these

fluxes and the other necessary parameters. Since only a forward and

a backward flux are considered_ this is a one-dimensional calculation

and therefore has as a basic assumption that the incident radiation

is diffuse (i.e., the intensity is equal for all angles of incidence)

and that the radiation scattered sideways is compensated for by an

equal contribution from neighboring parts of the layer (i.e., the area

investigated is either small in cross section compared with the total

illuminated cross section of the sample or is large compared to the

thickness of the sample). This condition is not a severe limitation

since many practical heat-transfer problems are concerned with diffuse

radiation.

The treatment for the situations where temperature gradients are

present suffers from the further limitation that only total radiation

is considered and therefore the fact that the wave-length distribution

of black-body emission changes with temperature is not taken into

account. Also, it is assumed that the properties of the material

change only gradually. This then implies the assumption that the

temperature gradient across the sample which is being measured is

small. Practically all the methods of calculation in use today also

suffer from this limitation and in practice there are calculation

schemes which can alleviate the problem.

_
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ISOTHERMAL LAYERS

General Solutions

The total radiant flux is divided into two parts:

I the flux in the direction of the positive x axis

J the flux in the direction of the negative x axis

An absorption coefficient a is defined by requiring that

(aI dx) be the amount of the radiation absorbed from the flux I

on passing through an infinitesimal layer dx; a scattering coef-

ficient s is similarly defined by requiring that the flux scattered

backward from I (and therefore added to J) in an infinitesimal

layer dx is (sI dx). On passing through this layer, I will then

be diminished by the amount absorbed and the amount scattered, but

will be increased by the flux lost by scattering from J or:

_I/_x = -(a + s)I + sJ (i)

Similarly,

dJl_x = (a + s)J - sZ (2)

The general solutions of these equations can be found by putting

I = C1e °'x + C2e -Ox (3)

J = C3e °_x + C4e -cx (_)

only two of the four constants CI • • C4 being arbitrary. The

solutions (using the same notation as Hamaker) are then:

I = A(1 - #o)e c°x + B(I + #o)e -c°x (5)

J = A(I + _o)e c°x + B(I - _o)e -°°x (6)

where

(7)

_o = 4a/( a + 2s) = _o/(a + 2s) (8)

both roots being taken with a positive sign. In these equations A

and B are constants to be determined by the boundary conditions.

-4-



Specific Solutions

One of the cases for which specific solutions are desired is

that of a layer placed in a beam of diffuse radiation where there

is reflection from both internal and external surfaces.

At an interface where the index of refraction is increasing,

let the reflectivity equal 0o. At an interface where the index of
refraction is decreasing, let the reflectivity equal Oi" The former

parameter can be calculated from the index of refraction by integrat-

ing the fresnel reflection over the solid angle of incidence and

dividing by the total radiation. This integration has been carried

out by Walsh (ref. 9), and numerical values for the reflectivity as

a function of the index of refraction have been calculated and tabu-

lated by Ryde and Cooper (ref.lO). At an interface where the index

of refraction is decreasing, the reflectivity can be shown to be

[(n 2 - l)/n] +(Po/n 2) where the additional terms are due to the

amount of light that is totally reflected. These terms can be an

important, though very often neglected_ factor in heat-transfer cal-

culations. For instance# for a material with an index of refraction

of 1.5, Pi would be 0.595; for a material of index of refraction 2,

Pi would be 0.788, both factors being quite significant.

The following nomenclature will be used (where D is the thick-

ness of a layer):

Ii incident flux at x = 0

!o forward flux immediately inside the interface x = 0

Jo backward flux immediately inside the interface x = 0

JD backward flux immediately inside the interface x = D

ID forward flux immediately inside the interface x = D

There is assumed to be no incident flux on the back surface

X = D,

Then the boundary conditions are that at the front surface

x = O, part Po of the incident radiation li is reflected back,

and part i - Po is transmitted. The flux immediately below this
interface Io is composed of this flux (I - Oo)li plus that flux

reflected from the inner surface of x = 0 or PiJo, or

atx =0:

Io = (i - Po)li + PiJo (9)

-5-



At the back surface x = D, since there is no incident radiation,

the only flux is that part Pi reflected from the remaining forward
flux ID or

at x = D:

Jn : _iID (lo)

substituting in these equations for Io, Jo, ID, and JD from equa-

tions (5) and (6) gives:

A(l _o) + B(l + _o) = (i Po)Ii + PiA(l + _o) + PiB(l $o)
(ll)

and

A(I + _o)e _°D + B(I - _o)e -_°D = PiA(l - _o)e oOD + oiB(l + _o)e -o°D

(12)

These are the equations to be solved from the constants A and

B for these particular boundary conditions. They are (when the

exponentials are substituted for by hyperbolic functions):

A _

Iie-qoD(l - po)[Bo(l + pi ) - (i - pi)]

and

B

21[_o2(i+ pi)_ + (l - pi)_]si=h_oD + 2_o(i- _i_)cos__oDl(Z3)

!ieq°D(l - po)[#o(l + pi ) + (l - pi)]

2{[_o_(i+ 0i)2 + (l - pi)2]s_n__oD + 2_o(I- _i_)cosh_oD}(14)

Using these values in equations (5) and (6) gives the following

expressions for Ix (the fo1_ard flux at x) _d Jx (the backward

flux at x):

Ix =

Ii(l - pO){[_o(l + pi ) + (! - Oi)](l + _o)e-°°Xe qOD

+ [_o(i + pi ) - (i - pi)](l - _o)eO°Xe -qOD}

)22{[_o_(l + pi + (l pi)2]sinh qoD + 2So(I

-6
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Jx =

li(1 - O0){[_o(!+ Oi) + (1 - @i)](1- $o)e-C°XecOD

+ [$o(i+ Oi) - (1 pi)](l+ _o)ed°Xe-cOD}

2116o2(1+ Oi)2 + (1 - Oi)2]sinhgoD + 2_o(I- Oi2)coshqoDl

(16)

In practice it is impossible to check these quantities experi-

mentally; what can be checked, however, is the transmission and the

reflectivity. To arrive at these quantities the forward flux immedi-

ately _der the back surface ID is determined by substituting D

for x in equation (15). Then

q2_o(l - %)
In = (17)

[_02(i + pi )e + (i - pi)2]sinh CoD + 2_o(i - pie)cosh CoD

The transmission m is then the ratio of the amount of radia-

tion of the above that gets through the surface (i - 0i)! D to the
incident radiation, or

T = ID(1 - _i)/li (18)

giving for the transmission

2_o(1 %)(1 Pi)
: (19)

[Bo2(I + pi )2 + (i pi)2]sinh coD + 2_o(i - Oie)cosh o'oD

The reflectivity O can be found similarly if the fraction of inci-

dent radiation reflected from the front surface Ooi i is added to
the amount of backward flux that gets through the interface

(i - 0i)J o. Then

[(1 - pi )2 - _02(i - Oi 200)(i + Oi)]sinh GoD

+ 2_o(p 0 + pi)(l Pi)COsh doD
p = (20)

[_o2(1 + _i) 2 + (l - pi)_]sinh _oD + 2_o(l - Oi2)cos_, _oD

It is also possible to calculate the absorptivity _ of the layer

since _ + O + T = i. It is

2Pc(1 - Oo)[_o(1 + Pi)sinh go D + (1 - pi)(cosh _oD - 1)]
: (2l)

[po2(l + pi) 2 + (l - pi)a]s±nh GoD+ 2_o(l - Oi2)cosh _oD
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This is also the emission of the layer relative to black-body

radiation according to Kirchhoff's law.

Determining Optical Constants From Transmission Measurements

One of the objects of making transmission measurements is to use

them to calculate optical constants of the material. In order to do

this, equation (19) for the transmission of the material has to be
solved for the constants. Cross-mmltiplying in equation (19) gives:

2 o(i po)(l - pi ) = T_om(]. + pi )2 sinh coD + T(I - pi )a sinh qoD

+ 2_oT(! . pi2)cosh _o D (22)

or, by regrouping the terms,

T(I pi )2 sinh ooD = _o{2[(i - po)(l - 0i) T(I - pi2)cosh coD]

- TBo(! + pi )m sinh CoD } (23)

If two layers of thicknesses Dz and Da and transmissions Ti

and T2, respectively, are considered, then (dividing by equal

quantities)

Tz(l - 0i )2 sinh _oD i

Ta(I - Oi )2 sinh coD2

- - - I )_2[(1 po)(l pi ) Ti(l Pi2)e°sh GoD ] - Ti_o(l + °i sinh CoD i

2[(1 - 0o)(i - 0i) - Ta(l - pie)cosh aoD2] - T2Bo(l _ 0i )2 sinh ooD2

or (again cross-mmltiplying),

2T (I- %)(i - oi)3 sighCoD: 

- 2TITa(I + pi)(! 0i )s sinh coD i cosh coD 2

- _OTIT2(I + Oi)e(l - Di )a sinh ooDi sinh coD e

= 2T2(I - Do)(l Oi )s sinh ooD2

- 2TiT2(I + pi)(l - 0i )s sinh coD a eosh _oDi

- _OTIT2(I + pi)e(l - 0i )2 sinh coD i sinh coD e (25)

-8-



All the terms involving Bo drop out of the above equation

giving (having made use of the identity sinh x cosh y - cosh x sinh y

-z sinh (x - y))

sinh coD l sinh coDe (i + pi )

1"2 1":1- (i - po )
si_ co(D_ - D2) (26)

or, if sample thicknesses are chosen such that

DI : 202 _ 20 (27)

sinh 2Co D sinh Co D (I + 0i )

"r2 "1 (1 - %)
sinh CoD (28)

but

sinh 2x m 2 sinh x cosh x (29)

and

2 sinh coD cosh cod sinh coD (i + pi )

T2 T_ (z - %)
sinh coD (30)

and

cosh coD =

• _[_(l + Pi) + (1 %)]

2T_(1 - %)
(31)

allowing one to calculate oo from two transmission measurements.

Once co is known, _o can be found either by solving equa-

tion (19) by the quadratic formula, or with an electronic data

processing machine.

It should be noted at this point that these equations are only

valid for experimental situations where diffuse radiation is incident

on a sample and the total hemispherical transmission is measured.

The usual spectrometer experimental setup will not fill these require-

ments, since narrow angle illumination and collection is used; how-

ever, a microbeam condensor with suitable corrections or an integrat-

ing sphere can approximate the proper conditions.

NONISOTHERMAL LAYERS

In order to be useful in heat-transfer calculations, this theory

mnst be extended to nonisothermal situations. This can be done (as

-9-
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is shown by Hsmaker as well as Schuster) if in each radiation equation

a term is added representing the amount of energy emitted by the

infinitesimal region. This is eE dx where e is the emissivity

and E is the black-body radiation at the temperature at x. Making

use of Kirchhoff's law, this term becomes aE dx where a is the

previously defined absorption coefficient. An additional, heat

balance, equation is now needed expressing the fact that heat is

neither accumulated nor produced within the body:

k deT

dx2
--+ a(l + J) = 2aE (32)

where k is the lattice thermal conductivity. The first term on the

left side represents the heat accumulated by conduction; the second

term is _he heat absorbed from the radiation, and the sum of these

equals the heat loss by radiation (the term on the right).

The total black-body radiation is given by the Stefan-Boltzmann

equation:

E = _'n2T 4 (33)

where _' is the Stefan-Boltzmann radiation constant and T is the

absolute temperature. If the temperature is high and the tempera-

ture gradient not too large, then E may be represented by

E = Eo + b(T - To) (34)

where

b : 4c'n2To s (35)

To is a temperature close to the actual temperature, and E o is

the corresponding total radiation. When the above equation holds,

the temperature may be fixed equally as well by E as by T and,

since this simplifies matters, E rather than T has been retained

in the equations. The set of simnltaneous differential equations
is then

dI : -(a + s)I + sJ + aE (36)
dx

dJ : (a + s)J - sJ - aE (37)
dx

k d2E

b dx 2
- -- + a(l + J) : 2aE (38)

- lO -



is:

where

Hsms_kershowsthat the complete general solution of these equations

I = A(I - #)e°x + B(I + 9)e -°x + C(o-x - _) + F (39)

J = A(I + 9)eOx + B(I - 9)e -O'x+ C(ox - _) + F (40)

E = -A_e°x Bee-°x + Cox + F (41)

d = + T
(42)

= _ (43)
a+2s

: = (44)
k(a + 2s) kd

and the proper n2 term which does not appear in Hamaker's work has

been introduced here.

To illustrate how this theory might be used the particular

solutions will be derived for a layer receiving radiation at both

surfaces, and where heat is being conducted away from the surfaces.

The amount of heat being conducted away from the surface must equal

that conducted to the surface in the solid giving one boundary con-

dition at each surface. The other two boundary conditions are

supplied by the radiation interchange at the surface. The tempera-

ture (particularly at the surfaces) and the emitted fluxes will be

solved for.

Immediately below the front surface x = 0, the forward flux Io

is equal to that part of the incident flux !i which is not reflected

((I - po)!i) plus the amount of the backward flux at this surface Jo

which was reflected (PiJo). Therefore

Io : (i - Po)I i + OiJ o (45)

or (substituting from eqs. (39) and (40)):

A(1 _) + B(1 + _) - CB + F : (1 - Po)Ii + PiA(1 + 9) + PiB(1 - 9)

+ PiC_ + FPi (46)

- 11 -



Similarly, immediately below the back surface x = D, the backward

flux JD is composed of the part of the incident flux on this surface

Ji which is transmitted ((I - Oo)Ji) plus the part of the forward flux

at this surface which is reflected (0liD) , and

or

A(1 + _)eaD + B(l

JD = (i - po)J i + oil D (47)

B)e-cD + C(cD + _) + F

= (i po)Ji+  iA(1

If we define

b,

S)e _D + BPi(l + _)e -qD + PiC(qD - B) + piF

(_)

as being equal to the gradient at the surface times

surface surface

or if the heat is conducted away by a gas_

_ -bQg_ - (5o)
surface k

where Q_ is the heat being conducted (or convected) away by the gas.

Then, since (by differentiating eq. (41))

dE = _Am_eO-X + B_e_O-X + C_ (51)
dx

the other two boundary conditions are

= (52)

and

(53)

/dE
= (54)

x\_/D

q = -A_e qD + Baqe -_D + C_ (55)

- 12 -
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The four simultaneous equations (46), (48), (53), and (55) are

then solved for the constants A, B, C, and F where it has been

found convenient to define a function consisting of the denominator: Let

2(1 - Di)(cosh qD

Them

(e-_D- i)|_(i
A=

i) + [2_(i+ pi)(l+ K) + KqD(l- pi)]sinh_D m etc

(56)

Po)(Ii - Jl) + _[2_(i + pl ) + _D(I - pi)]}

B

(e_D_ l){_(l- po)(li

2o etc

Ji) + B[2_(I + Pi) + _D(I - pi)]}

(57)

C

2_ etc (58)

-2_(I -po)(Ii -Ji)sinh _D+4N[(I - pi)(cosh _D-I)+B(l+pi)sinh qD

F

20 etc (59)

2_neli{(i- pi)(cosh _D-I) + [_(i+ Oi)(i+_)+_oD(I- pi)]sinh qD}

+ 2_n2Ji[(l-Pi)(cosh _D i) + _(i + pi)(l + _)sinh _D]

- 2oqD[(l 0i)(cosh _D - i) + _(i + Oi)sinh dD]

2a etc
(60)

Introducing these constants into equations (39), (40), and (41)

makes it possible now to find the fluxes and temperature at any point

in terms of the incident radiant and thermal fluxes. They are

d(l - po)(li - Ji)[eOX(e -qD - i)(i _) + (e cD - i)(i + B)e -°x

- 2_(o-x - _)sinh aD] + q{[2_(l + Pi)

+ _D(I - pi)][e°X(e -_D - I)(I - B) + e-°X(e _D - i)(l + _)]

+ 4(ox - _)[_(i + Pi)sinh aD + (i - pi)(cosh _D - i)]}
+F

J

2d etc

d(l po)(li - Ji)[egX(e -gD i)(i ÷ _) + e-OX(e qD !)(I

- 2_(ox + _)sinh _D] + _{[2_(i + Pi)

+ aD(l - pi)][eqX(e -_D - i)(! + _) + e-_X(e cD - i)(i - B)]

+ 4(dx + _)[_(i + Pi)sinh _D + (i - pi)(cosh _D - i)]}

(61)

_)

+F
2_ etc

- 13 -
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E

-_q(l - OO)(li Ji)[eOX(e -_D - i) + e-OX(e gD i) + 2ox sinh oD]

- _{m[2_(l + pi ) + qD(l - pi)][e°-X(e -_D - i) + e-_X(e _D - i)]

- 4o-x[_(1 + 0i)sinh oD + (1 - 0i)(cosh _D - i)]}
+F

20 etc (63)

These are again not measurable quantities. The quantities desired

are the fluxes emitted at each surface and the temperatures at the sur-

faces. At the back of the layer, x = D, the flux emitted in the for-

ward direction (here denoted by Is) is equal to the fraction of the

forward flux immediately under this surface ID which is not reflected

at this surface (i - Pi)ID plus the fraction of the incident radiation

on this surface which is reflected into the forward direction OoJi, or

Ie = (i - 0i)l D + PoJi (64)

Similarly (where Je is the flux emitted in the backward direc-

tion at the front surface),

Je = (i - pi)J o + Pol i (65)

Finally, the energy equivalent of the temperature at the surfaces

is found by substituting x = 0 and x = D into equation (63). Actu-

ally in the constant b, the n2 term should be the index of refrac-

tion of the material in which the particular quantity is measured. In

order to keep the notation consistent in this part, the n2 term will

be kept in the constant b but the energy equivalent of temperature

measured outside the sample (here denoted by Eao and EaD ) will be

divided by n2, so that the numerical results will be correct. Before

the results are set down, it is desirable to define the following

functions since most of the equations are symmetrical.

Let

etc _ 2(1- pi)(coshaD -i)+ [2_(l+Pi)(l+_)+_aD(l-Oi)]sinh_D
(66)

2_(i - po)(l + _)sinh dD
f_ _ (67)

etc

2(1 -pi)(cosh _D- l)+ [2#(p o+oi)(I+K) +mqD(l- pi)]sinh qD
f2 _

etc (68)

(l- _)(i -Oi)(cosh qD-l)+ [_(l+Oi)(l+_) +EqD(I- pi)]sinh oD
f3 _

etc (69)

- 14 -
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(l + g)E(l - Di)(cosh cD - i) + _(1 + Pi)sinh _D]
f4 (7o)

etc

(1 - pi)[-2(cosh _D - i) + cD sinh oD]

f5 _ etc (71)

[_D(I+K)(!- Oi ) + 2_E(l+Di)](cosh cD -i)+_cD(1- Oi)sinh oD
f6 _

ne etc (72)

Then the desired terms are (where Q_g is the negative of the heat

removed by conduction, and, therefore, _ m bQ_g/k):

le = f11i + f2Ji + fsmQ_g

Je = f21i + fiJi - fsmQ_g

Eao = fsli + f4Ji - f6 _Q_g

EaD = f41i + fsJi + f6 _ Q_g

(73)

(74)

(75)

(76)

CONCLUSIONS AND DISCUSSION

The previous section illustrates how analytical expressions can

be obtained to describe radiation transfer through scattering and

absorbing nonisothermal layers. The actual choice of the independent

and dependent variables is arbitrary; for instance, it is also possible

to specify the surface temperatures and perhaps assume no incident

fluxes, then solve for the emitted fluxes and the surface gradients

necessary to maintain the given situation. Proper boundary conditions

for several other cases are given in Hamaker's paper while reference ii

shows some calculations for a semitransparent layer on a metal. The

latter paper also discusses the nature of the gradient changes at the

interfaces, as well as the considerations that occur when the layer

gets thin. Another application is given in reference 12 where radia-

tion heat transfer through powders is treated by using a model of a

system of layers through which the radiant transfer has been calculated.

Whereas this simplified system allows one to calculate analytic expres-

sions for radiant transfer in very complex situations, some of the

limitations of the method should be noted. Even with perfectly diffuse

radiation incident on a sample, the assumption of diffuse radiation

right below a surface where the index of refraction is increasing is

only an approximation, since the radiation will be brought into a

15-



narrower solid angle, as the result of refraction at the interface.

It is assumed that the radiation is rapidly rediffused due to scatter-

ing. This treatment is, of course, invalid where the scattering

centers are so close together that phase effects must be taken into

account and coherent scattering occurs. Also, the method breaks down

when the layers become so thin that their properties change; that is,

they can no longer be considered to be homogeneous, lllustrations of

this would be where the pores might be relatively large compared to

the sample layer thickness. Finally, it should be noted that the

absorption and scattering coefficients measured or calculated here

from diffuse radiation measurements and calculations are not the same

as would be measured by narrow angle measurements. The narrow angle

measurements measure changes in the image forming part of the radia-

tion only. The absorption coefficient defined here will actually be

a function of the scattering coefficient, since the scattering coeffi-

cient will determine the actual path length through the sample and

therefore the total amount of absorption.
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